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Abstract. A two-dimensional lattice gas model with nearest-neighbour attractive interaction
confined in a strip of widthL between two parallel boundaries at which an attractive short-range
force acts is studied by Monte Carlo simulations, for cases where the system is in the wet phase
near the critical wetting transition line forL→∞. We study the shift of the chemical potential
µ of the transition in the strip as a function ofL by thermodynamic integration methods,
1µ = µc(L) − µc(∞), and also obtain the thicknesslc of the wetting film at the chemical
potentialµc(L) at which capillary condensation occurs. In the range 326 L 6 120 the data
are consistent with a variation according to the Kelvin equation,1µ ∝ L−1, as well as with
a shifted Kelvin equation,1µ ∝ (L − L0)

−1, with a constantL0. Thus, we find no evidence
for the fluctuation correction{1µ ∝ (L− 3lc)−1} predicted by Parry and Evans. This failure is
traced back to the fact that in this range of linear dimensions there are not yet any well developed
wetting layers at coexistence, and the predictionlc ∝ L1/3 from the theory of complete wetting
does not hold in this range either. Instead we empirically find a relationlc ∝ lnL + constant
over the whole range of system sizes we studied.

1. Introduction

In a confined geometry phase transitions get shifted (and sometimes also rounded) by finite
size effects [1–7]. A particularly interesting phenomenon is the wall-induced shift of the
first-order liquid–gas-type transition in thin film geometry (‘capillary condensation’ [7–11]),
since there may occur a subtle [12–19] interplay of finite size effects and wetting phenomena
(for reviews on wetting in general see [20–22]). Only in the situation where the walls (for
simplicity, we discuss here only the symmetric case of confinement by two parallel and
physically fully equivalent walls) are nonwet (in other words, the contact angleδ [20–22]
is nonzero), the simple ‘Kelvin equation’ [23] is supposed to hold [7–11],

1µ ≡= µcoex− µc(L) = 2σlg cosδ/[L(ρl − ρg)] L→∞. (1)

In equation (1), we have assumed that the condensation transition from a gas (at a bulk
gas densityρg) to a liquid (bulk densityρl ) occurs in a slit-like capillary of thicknessL at
a chemical potentialµc(L), while in the bulk it occurs atµcoex ≡ µc(L → ∞), and the
interfacial tension of the (planar) liquid–gas interface is denoted asσlg.

When the walls are wet, however, forL→∞ andµ = µcoex the walls are coated by
infinitely thick wetting layers (assuming an ideal case without any effects such as gravity
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that limit the growth of a wetting layer to a large but finite value), and this phenomenon
leads to modifications of equation (1) for large but finiteL [12–19]. Parry and Evans [18]
have suggested that in leading order the effect of the wetting layer can be expressed by
replacing equation (1) with

1µ = [2σlg/(ρl − ρg)]/(L− φl) L→∞ (2)

wherel is the thickness of the wetting film and for short-range wall forces the constantφ is
φ = 2 in d = 3 dimensions while it isφ = 3 in d = 2 dimensions (where both the confining
walls and the gas–liquid interfaces of the wetting layers are one-dimensional, of course). In
view of a gas–liquid condensation in confined films ind = 2 we have, of course, ignored the
fact that the system is quasi-one-dimensional and hence in the strict sense there is no longer
any sharp phase transition [24–26]. The reason why the resulting rounding of the transition
can be ignored is because the regionδµ (or δT when one crosses the coexistence curve
by varying the temperatureT , respectively) over which the rounding occurs is extremely
small [24–26], namely of the order ofL−3/2 exp(−Lσlg/kBT ). Physically this rounding is
due to the fact that the one-dimensional strip has no true long-range order but rather breaks
up into domains of extentξ‖ ∝ L1/2 exp(Lσlg/kBT ) [24–26]. For largeL this lateral linear
dimensionξ‖ in the direction parallel to the confining boundaries is so large that it is of
practical relevance neither for experiment nor for simulations [17]. Note that the cased = 2
may be practically relevant for phase transitions in monolayers adsorbed at stepped surfaces,
where terraces of widthL bounded by parallel steps can be produced experimentally and
act as substrates for adsorption [17, 27]. Of course, in this case one should consider the
more general situation of two different boundary conditions at the terrace edges, since a
step upward and a step downward are not equivalent.

While in equation (2) for the cased = 3 whereφ = 2 the effective thicknessL∗ = L−2l
has the obvious geometrical interpretation that only the thicknessL∗ taken by the gas should
be used in the ‘Kelvin equation’, equation (1), the situation ind = 2 is more subtle since
φ = 3 (this value results from strong interfacial fluctuations [18]) does not allow any obvious
interpretation of the effective thicknessL∗ = L − 3l. Furthermore, one expects a singular
(power-law type) variation of the thickness of the wetting layer at coexistence [17, 18] in
the strip of thicknessL, since the thickness of the wetting layer in a semi-infinite system
diverges asl ∝ (1µ)−1/3 as1µ→ 0, and at the transition1µ scales like 1/L for a strip
(equation (1)). This yields

l ∝ L1/3 ∝ (1µ)−1/3 L→∞ (3)

while in d = 3 the corresponding variation is only logarithmic [17–19].
While in previous work [17] capillary condensation in the two-dimensional lattice gas

with nearest-neighbour interactions has already been studied by Monte Carlo simulations,
data were only taken relatively close to the bulk critical temperatureTcb(T /Tcb > 0.95,
where the bulk correlation lengthξb is already considerably larger than the lattice spacing)
and for thin strips (L 6 36 for T/Tcb = 0.95); these data are clearly not in the asymptotic
regime of equations (2) and (3) and hence the test of equation (2) proposed by [18] turned
out not to be meaningful. In the present work, we reconsider this problem, extending
the simulation studies to lower temperatures and larger linear dimensionsL, to clarify the
applicability of equation (2).

In section 2, we briefly describe the model and techniques of simulation and analysis of
the Monte Carlo ‘data’, while in section 3 we present our results. We conclude in section 4
with a discussion of the possible reasons for our failure to find any clear evidence for
equation (2) from our model simulations.
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2. Some background on the model and the techniques of simulation and analysis

Here we are not concerned with the study of a realistic model of some particular material but
rather study the generic case of the nearest-neighbour Ising (lattice-gas) model [17, 19, 27].
Because of its simplicity, the model has distinctive advantages: (i) The discreteness of
the lattice and the short range of the interactions allows rather fast simulation codes.
(ii) What is more important, the location of the transition in the bulk(µcoex) is known
exactly, it corresponds to the case of bulk magnetic fieldH = 0 in the transcription to the
corresponding Ising ferromagnet [19]. (iii) Also the location of the wetting transition in
the presence of local boundary terms (‘surface magnetic field’H1 in the magnetic notation
[17, 19, 27, 28] is known from exact calculations [29],

exp(2J/kBT )[cosh(2J/kBT )− cosh(2Hw
1 /kBT ] = sinh[2J/kBT ] (4)

J (> 0) being the exchange interaction of the Ising ferromagnet, andHw
1 (T ) describes the

second-order wetting transition of a semi-infinite system (figure 1). For completeness and
the sake of easier understanding, we quote the Hamiltonian first in ‘magnetic notation’,

HI = −J
∑
〈i,j〉

SiSj −H
∑
i

all spins

Si −H1

∑
i in layer 1

Si −H1

∑
i in layer L

Si (5)

where the Ising spinsSi = ±1, the sum〈i, j〉 is taken once over all nearest-neighbour pairs
in the lattice (note that in layers fromn = 2 to n = L− 1 there are four nearest neighbours
but in layersn = 1 andn = L there are only three, due to the free boundaries at the edges
of the system). Of course, Monte Carlo simulations cannot deal withL×∞ strips, so we
actually simulate aL×M geometry but withM � L and a periodic boundary condition in
the ‘long’ direction of the system. Linear dimensions used are in the range 326 L 6 120
andM = 6L except for the caseH1/J = 0.75, T/Tc = 0.85 where bothM = 6L and
M = 12L were used (within statistical errors no difference could be detected).

Figure 1. A surface phase diagram of a semi-infinite Ising (or lattice gas) model. In the plane
of reduced temperatureT/Tcb and reduced surface magnetic fieldH1/J the wetting transition at
Hw

1 (T ), shown as a full curve, equation (4), separates the nonwet states from the wet states of
the surface. The symbols indicate the state points where simulations of capillary condensation
have been performed in the present work:T/Tcb = 0.75,H1/J = 0.75 (full dot); T/Tcb = 0.85,
H1/J = 0.75 (open triangle);T/Tcb = 0.85,H1/J = 0.60 (full triangle).
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As is well known [17–19, 27], equation (5) is equivalent to the lattice gas problem,
where lattice sitesi can be occupied (concentration variableci = 1) or empty(ci = 0), if
one makes the identificationci = (1− Si)/2, µ being the chemical potential,

Hlg = −ϕ
∑
〈i,j〉

cicj − ε1

∑
i in layer 1

ci − ε1

∑
i in layer L

ci (6)

Hlg = −µ
∑
i

ci = HI +H0 (7)

H0 being a constant that only shifts the origin of the energy scale, and the pairwise energy
ϕ and boundary energyε1 are related toJ andH1 as follows,

ϕ = 4J ε1 = 2J − 2H1 (8)

while µ is related to the magnetic field (µ = −2H − 8J , i.e. phase coexistence in the bulk
occurs forµcoex= −8J ). Equation (8) shows that in the lattice gas a boundary potential (ε1

arises also whenH1 = 0 in the corresponding Ising magnet (‘missing neighbour effect’).
Conversely, even if the boundary potentialε1 is zero, we have to work withH1 6= 0 in the
Ising magnet.

Monte Carlo simulations have been carried out with a standard single spin flip algorithm,
taking 104 Monte Carlo steps (MCS) per site, the first 2.5× 103 MCS being discarded for
equilibration. These times are relatively short and thus our results still show noticeable
statistical errors but for the system sizes involved (forL = 120 our lattice contains 86 400
spins) we have to take data at many values of the thermodynamic integration, and thus
altogether the calculation already involves a total investment of computer time of the order
of 103 workstation hours.

The quantities recorded are profiles of the local densityρn across the film, as well as
the average densitȳρ = (∑L

n=1 ρn)/L and the average energȳE per lattice site in the Ising
magnet representation,̄E = 〈HI 〉/(LM). (Here the overbar stands for the averaging over
all the layersn.) As an example, figures 2 and 3 show data forρn which qualitatively
resemble their three-dimensional counterparts (cf [19]). The layer densitiesρn are the
thermal averages of the concentration variables for lattice sites in the respective layer,
ρn = 〈ci〉 for i in layer n.

Figure 2. Layer densities ρn, for n =
1, . . . ,10, plotted versus chemical potential differ-
ence(µcoex−µ)/2J (= H/J), for the caseH1/J =
0.60, T/Tcb = 0.85, L = 72 andM = 432. Note
that pronounced hysteresis between the liquid phase
and the gas phase is observed. The actual transition
pointµc(L) is determined from thermodynamic in-
tegration methods, and shown here by a straight
vertical line.

As expected, a pronounced hysteresis occurs at the first-order gas–liquid condensation
transition, see figure 2, making a straightforward estimation of the chemical potentialµc(L)
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Figure 3. Layer densitiesρn plotted versus the layer
numbern for the caseH1/J = 0.60, T/Tcb = 0.85,
L = 72 and M = 432, at phase coexistence
{[(µcoex−µc(L)]/2J = 0.0224}. The liquid branch
is shown by open symbols, the gas branch by full
symbols. Note the density enhancement near both
walls.

where the transition is difficult. We thus have followed [19], by applying thermodynamic
integration methods. Note that thermodynamic integration methods are necessary, since
Monte Carlo simulation methods straightforwardly yield derivatives of thermodynamic
potentials only (such as the average densityρ̄ and the average energȳE of the thin film), but
neither the entropy nor any of the relevant thermodynamic potentials (average free energy
F̄ or grand potential�̄ of the thin film) is a direct output of a Monte Carlo simulation.
Thermodynamic integration now means that one exploits a relation such asĒ = (∂F̄ /∂β)µ
to obtain the free energȳF of a state at temperatureT = 1/βkB and chemical potentialµ
as

βF̄ = βF̄0+
∫ β

β0

Ē(β ′)d. (9)

The starting temperatureT0 = 1/β0kB has to be chosen close to zero temperature, such
that the entropy is negligible,̄F0 ≈ Ē0. Now, in principle it would be possible to choose
one state at a chemical potentialµ1 in the liquid phase, the other state at another chemical
potentialµ2 in the gas phase, and obtain the free energiesF̄1(T , µ1) and F̄2(T , µ2) of the
two states, as well as their grand potentials�̄1(T , µ1) = F̄1− ρ̄lµ1, �̄2(T , µ2) = F̄2− ρ̄gµ2.
Next we could use these states on an isotherm at fixed temperatureT as reference states to
calculate grand potential differences from

�̄1(T , µ) = �̄1(T , µ1)−
∫ µ

µ1

ρ̄l(µ
′) dµ′

�̄2(T , µ) = �̄2(T , µ2)−
∫ µ

µ2

ρ̄g(µ
′) dµ′.

(10)

Then the phase transition is located by finding the chemical potential where the grand
potentials are equal,̄�1(T , µ) = �̄2(T , µ).

In practice, for largeD the thermodynamic potentials in the two states close to phase
coexistence differ very little, however, and hence the method would be very sensitive to
errors resulting from inaccuracies involved in the numerical integration in equation (9),
where one has to integrate over a rather wide range (T0 = 0.25Tc was chosen in practice).
Thus, we choose a slight variation of this technique [19], where one considers the free
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Figure 4. Energy difference per site1E/J
between the liquid and the gas branch
(full symbols) and corresponding free energy
difference (open symbols) plotted versus the
reduced temperature, for the caseH1/J = 0.60,
T/Tc = 0.85, L = 72, M = 432, and
bulk field H/J = 0.005 (liquid branch) and
H/J = 0.025 (gas branch), respectively. The
final result for the free energy difference1F/J
at T/Tc = 0.85 is1F/J ≈ 1.38× 10−2.

energy difference1F = F̄2− F̄1 between the two states atµ1, µ2, and carries out a single
integration over inverse temperatures only,

β(1F) = β0(1F0)+
∫ β

β0

1E(β ′) dβ with 1E = Ē2− Ē1.

As an example, figure 4 shows both1E and 1F as functions of temperature for a
typical case. Although the total energy per lattice site (in units ofJ ) clearly is always
of the order of unity, the energy difference1E(β) for our lattice site is of the order
of 10−2, and correspondingly small free energy differences1F result. By the present
techniques, however, it is possible to locate the transition point with reasonable accuracy
(figure 5). In applying equation (10), this then means we do not work directly with
the grand potentials̄�1(T , µ), �̄2(T , µ) themselves, but with grand potential differences
1�̄1 ≡ �̄1(T , µ)−�̄RP,1�2 ≡ (T , µ)−�̄RP, where the grand potential�̄RP in a reference
point RP (which we choose atT ,µ1 at the liquid branch) is subtracted (therefore the liquid
branch (LB) in figure 5 at the reference point starts at zero by construction, and the small
differences—1�1/J,1�2/J are both of the order of 10−2 as well—are obtained with
meaningful accuracy).

Since equation (2) proposes a relation between the shift1µ of the transition and a
reduced thickness̃L = L−φl, where it was suggested [18] thatφ = 3 in d = 2 dimensions
and l is the thickness of the wetting layer at the transition, it also is of interest to estimate
the latter. This can be done in terms of the surface excess densityρs as follows [30]

l = ρs/(ρ
coex
l − ρcoex

g ) (11)

whereρs can be expressed in terms of the layer densitiesρn at the gas branch as

ρs = 1
2

L∑
n=1

(ρn − ρb) ρb =
L/2+5∑
n=L/2−4

ρn/10. (12)

Note that by definition the surface excess densityρs can be related to the average density
ρ̄ by writing ρ̄ = ρb+ (2/L)ρs, as is well known [30]. In order to gain statistics, the bulk
densityρb is defined in terms of an average over the 10 innermost layers. ForL → ∞
we have at the transitionρb = ρcoex

g , while for finiteL µc(L) 6= µcoex, and thenρb will be
systematically smaller than the gas densityρcoex

g for bulk phase coexistence (for boundaries
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Figure 5. Grand potential difference1�/J
per lattice site, with respect to the reference
point (RP) at(µcoex− µ)/2J = 0.005 at the
liquid branch (LB), plotted as a function of the
reduced chemical potential difference. Data for
the liquid branch are shown by full symbols
and for the gas branch (GB) by open symbols.
The crossing point(1�1 = 1�2) yields the
transition point,µ = µc(L).

Table 1. Chemical potential shift1µ and gas excess densityρsc at the condensation transition
tabulated for various film thicknesses.

H1/J = 0.75, T /Tc = 0.85H1/J = 0.75, T /Tc = 0.75H1/J = 0.60, T /Tc = 0.85

L 1µ ρsc 1µ ρsc 1µ ρsc

32 0.0528 1.499 0.046 6 1.019 0.0760 0.721
40 0.0371 1.917 0.031 4 1.337 0.0485 1.032
48 0.0258 2.463 0.020 95 1.690 0.0310 1.378
60 0.0191 2.962 0.017 95 1.948 0.0274 1.526
72 0.0179 3.105 0.014 6 2.154 0.0224 1.744
96 0.0123 3.886 0.009 15 2.839 0.0150 2.280

120 0.0120 3.953 0.008 0 3.177 — —

that prefer the fluid phase). An inspection of figure 3 readily shows that for our choice of
parameters the liquid density at coexistenceρcoex

l is close to its saturation value unity, and
ρcoex

g is nearly zero. Thusl exceedsρs by a few per cent only.

3. Results of the shift of the condensation transition and of the corresponding
precursor wetting layer

Table 1 lists the results that we have obtained for1µ ≡ (µcoex−µc(L)/(2J )) and the excess
densityρsc of the gas branch at the first-order transition. Figure 6 plots1µ as function
of 1/L, to show that roughly one does have consistency with the simple Kelvin equation,
for large enoughL, while when one includes smallerL a pronounced smooth curvature is
seen on this plot. Figure 7 shows that this curvature can be interpreted in terms of an offset
L0 in the Kelvin equation,1µ(L) = C/(L − L0). Should one interpret this offsetL0 as
a consequence of the proposed modification of the Kelvin equation, equation (2)? In order
to check this possibility, figure 8 plots(1µL)−1 versusL−2/3, since equations (2) and (3)
imply that in this representation there should be a linear variation,

(1µL)−1 ∝ (1− φl/L) = (1− constantL−2/3) L→∞. (13)
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Figure 6. Shift of the reduced chemical potential at the transition, defined as1µ ≡
(µcoex− µc(L)/2, plotted as a function of 1/L, for H1/J = 0.75, T/Tc = 0.76 (squares),
H1/J = 0.75, T/Tc = 0.85 (open triangles), andH1/J = 0.6, T/Tc = 0.85 (full triangles).
The straight lines indicate fits of the data forL > 48 to the Kelvin equation,1µ ∝ 1/L. Note
that data forL = 32 are off the scales of this plot and have not been included here.

Unfortunately, figure 8 shows considerable scatter which masks possibly also some
curvature, and thus it cannot really be claimed that the data provide clear evidence for
equation (2). However, the data should not be taken as evidence against the asymptotic
validity of equation (2) either, simply because it is possible that we are in a parameter range
where1µ is still too large, andl is too small for equation (2) to be valid. Such a caveat
must be made considering the fact thatρsc is in the range from about 1 to 4 (table 1),
and thus alsol is in the range from 1 to 4 lattice spacings. This is clearly too small to
verify at least the asymptotic behaviour for the thickness of the wetting layer, equation (3),
as figure 9(a) shows: while the data forρsc versus1µ seem to be compatible with a
simple power law, the exponent is twice as large as that predicted! And the data forρsc

versusL also give too large ‘effective’ exponents but there is some evidence for a curvature
in the direction of smaller effective exponents, and it is possible that forH1/J = 0.75,
T/Tc = 0.85 the correct asymptotic behaviour has been reached for the two largest sizes.
We do not understand, however, why the plot ofρsc versus1µ does not exhibit the least
sign of a corresponding crossover. We recall that related problems for critical rather than
complete wetting (the exponents for critical wetting ind = 2 are seen only extremely close
to the transition) are reported in [28]. And surprisingly,ρsc is rather well consistent with a
simple logarithmic variation,ρsc ≈ bln(L/L0), whereb andL0 are constants, figure 9(b)
(note thatL0 in figure 9(b) is the same constant as in figure 7(b)).

The physical reason why precursor wetting layers having a thickness of a few lattice
spacings are not suitable to verify equation (3) is that the width of local fluctuations of the
interface is also a few lattice spacings, and hence a fully connected precursor wetting layer
at the boundary does not yet exist under these conditions, rather one finds a sequence of
irregular droplets attached to the boundary. This fact is readily seen from snapshot pictures
of the lattice gas (figure 10). So the standard picture involved in the theoretical description
[18], where one models the essential degrees of freedom in terms of two contoursl(x)

describing the local distance of the interface from the boundaries,x being a coordinate
along the boundaries, clearly does not apply, since the capillary wave Hamiltonian, that
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Figure 7. Plot of1µ(L) versusL, showing least square fits to a law1,µ(L) = C/(L− L0),
with constantsC, L0 quoted in the figure.

is then invoked, implies thatl(x) has only weak long wavelength fluctuations. While we
do not exclude that such a picture may become valid for much larger film thicknessesL,
whereρsc� 1, on a suitably coarse-grained scale, figure 10 gives clear evidence that this
picture does not apply for our range of parameters. In this respect, the present problem
differs from many other properties of the Ising model, for example bulk critical behaviour
where asymptotic laws can already be deduced when the correlation length is only a few
lattice spacings. Nevertheless, recognizing the fact thatl does not yet scale according to
equation (3), it is still conceivable that equation (2) is a useful improvement over the simple
Kelvin equation, if one takes the actuall (or ρsc, respectively) observed in the simulation
in that equation. Thus, plotting(1µL)−1 versusρsc/L we expect simple straight lines, cf
equation (13). However, plotting our data in this way (figure 11) we only observe a huge
scatter, much worse than in the corresponding plot(1µL)−1 versusL−2/3 (figure 8). It
does seem unlikely to us that this large scatter reflects simply our statistical and systematic
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Figure 8. Plot of (1µL)−1 versusL−2/3.
The meaning of the symbols is the same as
in figure 6.

errors, since the data used for this plot (figures 8 and 9) were distinctly smoother. We rather
feel that equation (2) in our parameter range (wherel andρsc are still rather small) simply
is not yet applicable.

4. Discussion

In this paper we have studied the shift of the first-order gas–liquid phase transition induced
by short-range boundary effects on a nearest-neighbour two-dimensional lattice gas model.
Strips of width L, with 32 6 L 6 120, have been considered at two temperatures,
T = 0.75Tc and T = 0.85Tc, choosing surface fields such that one is clearly on the
wet side of the critical wetting transition.

While our data are roughly compatible with the Kelvin equation in its simplest form,
1µ ∝ L−1, or with a constant offset,1µ ∝ (L− L0)

−1, we see no clear evidence for the
proposed relation,L = 3l (equation (2)). Of course, this conclusion is somewhat tentative,
in view of considerable statistical errors still present in some of the data (figures 8 and
9), and possible systematic errors since our aspect ratioM/L is still finite (M/L = 6)
rather than infinite (in one case data forM/L = 12 were generated as well, and no clear
sign of a systematic difference could be detected). Another systematic effect could be that
much longer runs need to be carried out to fully develop the long-range capillary wave
fluctuation spectrum, but again we have no positive indication that finite observation time
effects severely hamper our results. On the other hand, there seems rather clear evidence
from the data (figures 9 and 10) that under the present conditions there are not yet clearly
developed precursor wetting layers bound to the boundary, but rather the boundary gets
‘decorated’ more and more with irregular droplets asL increases. Of course, this would be
a description of anonwet boundary, for which the simple Kelvin equation (equation (1))
is believed to hold anyway. In this sense, our findings for the shift of the transition and
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Figure 9. (a) Log–log plot of the surface
excess densities at the condensation transition
of ρsc versus 1µ (upper part) and ofρsc

versusL (lower part). Note that the theoretical
behaviour (equations (3) and (11)) isρsc ∝
(1µ)−1/3, ρsc ∝ L1/3. In the lower part the
broken straight line indicates such an expected
behaviour. (b) Semi-log plot ofρsc versusL.

its size dependence are well compatible with the microscopic analysis of our system. The
interpretation of our findings hence is that for the studied range of sizes the ‘bulk field’H

present at the transition is still so strong that it eliminates the wet character of the boundary
(present atH = 0) more or less completely, making it appear to be essentially nonwet,
although forH → 0 it is wet. As a consequence, extremely large thicknessL (beyond the
reach of our simulations) would be needed to test equation (2). If this conclusion is not only
true for our nearest-neighbour lattice gas but generic for a broad class of physical systems,
the implication would be that the general theoretical description of wetting phenomena does
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Figure 10. Snapshot pictures of the lattice gas forµ = µc(L) andT/Tc = 0.75,H1/J = 0.75,
for (a) L = 72, (b) L = 120 and (c) L = 96, T/Tc = 0.85,H1/J = 0.60.

Figure 11. Plot of(1µL)−1 versusρsc/L. Note
that the theoretical expectation (equations (2)
and (3)) is that the data should fall on three
straight lines which all have a positive intercept
and a gradient close to−φ = −3 since ρsc

is only slightly smaller thanl. Such a line is
included for illustration only.
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have a limited validity for describing wetting effects on capillary condensation transition
only.

Clearly, it would be of interest to look into this problem by using other suitable
techniques, to estimate for which lengthsL (or l, respectively) one enters the regime where
equation (2) holds, and to develop a better theoretical understanding for the regime where
l is still small. We feel that this might also be useful for interpreting experiments.
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